
Educational Dungeon Generation Algorithm
Jaskrit Singh

School of Robotics Engineering
Worcester Polytechnic Institute

Worcester, Massachusetts
jsingh3@wpi.edu

Luke Sanneman
School of Robotics Engineering
Worcester Polytechnic Institute

Worcester, Massachusetts
lcsanneman@wpi.edu

I. INTRODUCTION

Procedural generation is used by many games to generate
unique worlds that are interesting to explore without having to
manually generate the entire world. While procedural genera-
tion is common and well refined for open 2D worlds, it is not
as common or refined for more constrained dungeon worlds.

A game currently in development, Daedulus’ Dungeon, aims
to use a dungeon to embed educational content in the form of
a physical space. This project will focus on creating a dungeon
generation algorithm to improve the variety of physical spaces
present in Daedulus’ Dungeon. The current generation consists
of a grid of rooms with 1-4 doorways connecting to other
rooms. Each door contains a math problem that must be solved
to unlock the door as seen in Figure 1.

The purpose of the game is to allow the player to explore
different areas of math as a physical space. To fulfill this
purpose, the dungeon must always give the player multiple
directions to explore in. The idea is that players can decide
which area of a subject they want to learn by solving problems
in those areas and moving to those parts of the dungeon.
Multiple choices are also required to allow the player to avoid
problems that are too difficult for their current knowledge
level.

It is also desirable for the dungeon to be able to flexibly
include custom puzzle rooms in the generation. These puzzle
rooms would have a defined start and end location with an
interactive puzzle to solve in the room. These rooms can be
designed with any arbitrary shape, so it is important that our
algorithm can accommodate them.

Our fundamental research is: Can motion planning be used
to create a dungeon generation algorithm allowing for custom
room shapes and allowing for control over the number of
exploration directions available to the user? If we are able
to succeed in creating an algorithm with these properties, it
could be used in the implementation of Daedulus’ Dungeon
as well as other dungeon games requiring similar constraints.

II. RELATED WORKS

According to [1] dungeon generation can be split into
two categories: constructive algorithms and search-based al-
gorithms. An example of a constructive algorithm would be
a generative grammar which uses rules to determine how
new dungeon primitives can be added to expand the dungeon.
Meanwhile, search-based algorithms generate many dungeon

Fig. 1: Example of a puzzle door from Daedulus’ Dungeon

candidates and optimize them based on a fitness function that
captures some of the desired dungeon properties. These often
use genetic algorithms to try to combine good qualities from
promising dungeon candidates.

Our approach will use a constructive algorithm to generate
the dungeon. However, there are certain properties that could
benefit from optimization. Using a search-based algorithm to
optimize for these properties could be an interesting problem
for future work.

One promising generative approach that has been used in
several games including Tiny Keep is to randomly sample
points and create a Voronoi Diagram of the space using the
points [2]. The Voronoi Diagram can then be used to make a
Delaunay Triangulation which connects adjacent Voronoi cells
to form a graph. A subset of these nodes and edges can then
be used as the foundation for the generated dungeon, where
the edges between rooms are created using A*.

Our approach is similar in that it samples room locations
and connects them, but since we are using motion planning, we
are able to use custom room shapes as part of the connections
between sampled rooms rather than only having corridors
generated by A*.

Our implementation will use a Sampling-Based Roadmap
of Trees (SRT) [3]. This method involves expanding randomly
from some preselected nodes before connecting the different
trees together. Although this method is primarily intended
for use in motion planning to plan around obstacles in high
dimensional space, it offers some benefits for our dungeon
generation algorithm. First, it provides a convenient way to
generate different parts of the dungeon around each room



Fig. 2: Diagram of the different dungeon components

before connecting the components together. This ensures that
there are many paths to connect to each originally sampled
room. Next, using the pre-generated trees as a starting point
gives us more ways to connect different rooms. This leads to
multiple paths between rooms and it can also be helpful for 3D
dungeon generation where the requirement of having certain
geometries of stairs can heavily restrict vertical movement.
Lastly, SRT would allow for parts of the dungeon generation
to happen in parallel, which would increase the performance
of the algorithm.

III. METHODOLOGY

We define a discrete environment as a grid of cells with
doorways connecting adjacent cells. Our dungeon is made up
of a set of dungeon components that take up a number of cells
and/or doorways as seen in Figure 2. When a cell takes up a
doorway, it can either place a door in the doorway to make
it passable or it can place a wall in the doorway to make it
impassable.

We define three types of dungeon components: Corridors,
Puzzle Rooms, and Boss Rooms.

Corridors are a set of cells that are connected together
without any doors between them, meaning the player can
freely move through a Corridor.

Puzzle Rooms are a set of cells with a start door and an
end door, with walls on every external edge that is not a door.
Puzzle Rooms are a challenge to pass through so it is important
that the player is never required to solve any Puzzle Room
since it might be too hard for them.

Boss Rooms are n x n square of cells with doors coming off
in each cardinal direction and walls on every other external
edge. There will be several Boss Rooms in the dungeon and
it is important that the player has multiple paths to reach each
Boss Room.

Our task is to make a dungeon generator with the following
properties:

1) The dungeon generator can take in at least 10 different
Boss Room coordinates. The generator should be able
to create a dungeon that connects to all of these Boss
Rooms.

2) The dungeon generator should not connect two sides of
a Puzzle Room with a Corridor. This would make the
Puzzle Room pointless.

3) The dungeon generator should generate the dungeon in
such a way that the player has at least 3 choices of
Puzzle Rooms at every location.

The Dungeon Generator will achieve these properties by
first using a local planner to generate parts of the dungeon
around each Boss Room. The Dungeon Generator will then
attempt to join the different pieces of the dungeon together.
Meanwhile, the validity checker will ensure that the dungeon
that is created follows property 2 and avoids self-intersections.

We can break the Dungeon Generator into 3 sub-algorithms:
the Validity Checker, the Local Planner around each Boss
Room, and the Global Planner attempting to connect the Boss
Rooms.

A. Validity Checker

In order to create a dungeon that avoids self-intersections
and follows property 2, we create a validity checker that is
called whenever we want to add a new component to the
dungeon.

The validity checker first checks that the new component
does not intersect any part of the existing dungeon. This means
ensuring that none of the new component’s cells will be placed
on an existing cell and making sure that none of the new
component’s walls or doors will be placed on an existing door.
The new component’s walls are, however, allowed to intersect
with existing walls.

The next step of the validity checker is to make sure that
the new component does not result in a useless puzzle room
as described in property 2. This property can be broken in two
ways:

• A new Cell can be added which creates a Corridor that
connects the two sides of a Puzzle Room

• A new Puzzle Room can be added with both of its doors
opening to the same Corridor

If either case is detected, the validity check will fail.

B. Local Planners

The goal of our local planners is to grow a dungeon around
a given Boss Room while attempting to follow property 3 as
closely as possible. For the dungeon, we can define our nodes
as Corridors and Boss Rooms while our edges are Doors and
Puzzle Rooms. This way we can define property 3 as ”every
node must have at least 3 neighbors.”

1) Expansive Spaces Trees (EST) [4]: Considering that we
want to prioritize connecting Corridors with few neighbors,
EST seems like a logical choice of planner. EST chooses
to expand Corridors based on a weight, w = 1

1+#neighbors .
By expanding Corridors with few neighbors, we are likely to
connect them to other Corridors, thereby increasing how many
neighbors they have. This should result in the well-connected
dungeon that we desire.

The next step is to determine if the node should expand by
adding a Cell or by a Puzzle Room. When the node is small



(a) r=0.5 (b) r=0.05

(c) r=0.01

Fig. 3: Running EST for 1000 iterations with different decay
parameters. Colored sections are rooms and the blue and white
cells are 1x1 Puzzle Rooms.

and just has a few Cells, we probably want to add more Cells,
but when the node gets big, we want to prioritize adding more
Puzzle Rooms. We can get this behavior by using the function
P (AddCell) = e−rn to determine our probability of adding a
cell, where n is the number of cells, and r is a decay parameter
that must be tuned.

Finally, we must choose how to expand each node. For this,
we just expand from the node in a random valid direction.

In Figure 3 we can see what it looks like to run EST for
three different decay parameters. In Figure 3a we see that
r = 0.5 is probably too large of a decay parameter, creating
rooms with just a few cells in them. Meanwhile, looking at
Figure 3b and Figure 3c, we see rooms of a more reasonable
size. These larger rooms also do a better job of connecting to
multiple other rooms, giving the player lots of options.

However, looking at the generated dungeons, we see a
problem. All of the dungeons are very tightly clustered around
the center, leaving no open space. It would be desirable for
the generation to leave some holes to limit player motion so
they have to make large scale navigation decisions on which
way they want to go.

2) KPIECE [5]: In order to try to create dungeons that
explore the space better, we can use a simplified version of
KPIECE. In this case our high-level projection is the Corridor
we decide to expand while our expansion is the single Cell or
Puzzle Room we add.

In this case, we can consider KPIECE as an extension of
EST since we still have weights that are inversely proportional
to the number of neighbors a Corridor has. For KPIECE we
just have to add a few extra terms. We can say that our
expansion weight for each Corridor is, w = log(i)

sn , where

Fig. 4: KPIECE dungeon generation after 1000 iterations with
r=0.05

i is the iteration the first cell in the Corridor was created,
s is the number of times the Corridor was expanded, n is
the number of neighbors the Corridor has. For the number of
expansions, s, we also count expansions that fail due to the
validity checker, this way if a Corridor fails to expand too
many times, we start to ignore it.

Just like EST, we expand in a random direction and use a
decaying exponential to determine the probability of adding a
Cell vs a Puzzle Room.

Looking at Figure 4 we see that KPIECE did better than
EST at leaving some space in the dungeon, thereby making a
more interesting dungeon to explore. It also did a good job at
maintaining a lot of connections for each Corridor.

3) Rapidly-exploring Random Tree (RRT) [6]: EST and
KPIECE do well at maintaining a high number of connec-
tions between Corridors, but even KPIECE struggles to really
explore the 2D space. It could be desirable to have a dungeon
that expands to fill a larger area without filling in everything
on the way. RRT is well suited for this purpose.

To implement RRT, we start by sampling a random point
within our generation area. We then find the Corridor that
is closest to the sampled point and extend it by one Cell or
one Puzzle Room in the direction of the point. Finding the
nearest Corridor instead of the nearest cell allows up to speed
up the process of finding a nearest neighbor. Additionally,
when expanding from a Corridor, we can use the same
decaying exponential function we used in EST and KPIECE
to determine if we should add a cell or a Puzzle Room.

Looking at Figure 5 we can see that RRT does a much better
job of exploring the space than EST and KPIECE. However,
this comes at the cost of node neighbor connectivity. Most
Corridors appear in a line of Corridors and there are no loops
in the dungeon.

4) Mixing Planners: We can mix RRT with either EST or
KPIECE in order to get Corridors that connect to a lot of
neighbor Corridors while also exploring the space well.

In Figure 6 we can see a generation run where each
iteration there was an 80% chance to expand the dungeon



Fig. 5: RRT dungeon generation after 1000 iterations with
r=0.05

Fig. 6: Dungeon made with a mixed KPIECE and RRT
planner. Each iteration there was an 80% chance to use
KPIECE and a 20% chance to use RRT.

using KPIECE and a 20% chance to expand the dungeon using
RRT.

C. Global Planner

We can handle multiple boss rooms by having each Boss
Room grow a dungeon around it until it collides with the
dungeons formed by the other boss rooms. This process can
work with the mixed planner described in the last section, but it
is inefficient when it comes to connecting boss rooms together
in a large space. Therefore, we need to modify our planner to
encourage the Boss Room dungeons to grow towards each
other.

We can do this by adding a chance to sample centers of
Corridor Nodes from nearby Boss Room Dungeons as the
points to expand towards.

Looking at Figure 7 we can see that adding the sampling
points on the other sub-dungeon helps to increase the number
of paths between the two sub dungeons.

Finally, once we have a dungeon that adequately connects
the Boss Rooms together, we need to trim some of the extra
Corridors that only have 1 or 2 neighbors to make sure that we
are following property 3. We must do this trimming iteratively

(a) 0% chance to sample other
dungeon node

(b) 10% chance to sample other
dungeon nodes

Fig. 7: KPIECE-RRT with and without chance to sample nodes
from the other sub-dungeon

(a) Full Dungeon View (b) Closeup

Fig. 8: RRT-KPIECE run for 20000 iterations followed by
trimming of under-connected Corridors

to ensure that no Corridors remain without an adequate number
of neighbor Corridors.

Looking at Figure 8 we can see that after running RRT-
KPIECE for 20000 iterations and then trimming Corridors
with less than 3 neighbors, we are left with a suitable dungeon.
From Figure 8a we can see that all the Boss Rooms are
connected together in multiple ways and from Figure 8b we
can see that all Corridors are connected to multiple other
Corridors, giving the player multiple options. The dungeon
also has a lot of holes, making for a more interesting dungeon
to explore.

IV. PLATFORM AND EVALUATION

A. Platform

All code was implemented in C# and Unity. The code can
be run as follows:

1) Ensure that Unity-Hub and Unity 6.0 are properly in-
stalled on the test machine.

2) Locate the C# package containing the files for the
Dungeon Generator and add them as a project in Unity
Hub.

3) Launch the project by clicking on the project’s name.
4) Navigate to the ’SampleScene.unity’ file within the

’Assets’ folder, and click on it.
5) Press the play button on the top of the screen, and click

on the ’Scene’ tab on the top left.



B. Evaluation

We generate 5 dungeons with 5 Boss Rooms each on a 200
by 200 grid using RRT-KPIECE. We allow the dungeon to
expand for 25,000 iterations and then we trim away Corridors
that are connected to less than 3 Corridors. We visually inspect
each dungeon to ensure that the generated dungeons follow the
following properties:

1) Boss rooms and origin are all sufficiently spaced out
2) No cells overlap
3) No doors overlap
4) No doors open into the side of a Puzzle Room
5) Check all Puzzle Rooms to ensure that both ends do not

connect to the same Corridor
6) Check that all Boss Rooms are connected together with

multiple paths
During the evaluation, we found that almost all parts of the 5

dungeons matched the above criteria. There are just a few rare
cases where both sides of a Puzzle Room end up connecting
to the same Corridor. Considering how rare this phenomenon
is, it is unlikely to effect the playability of the dungeons in
general. However, the fact that it exists at all suggests that
there is a bug in our validity checker. This bug could likely
be eliminated in future work on the project.

Generation of the dungeons took an average of around
25 seconds to execute. This is an adequate amount of time
considering that these dungeons were on the same scale as 8a
which would take many hours of play-time to complete. This
generation cost could also be incurred incrementally if a faster
loading time is desired.

The only other error that was found during generation
was the occasional occurrence of floating islands that do not
connect to the rest of the dungeon. These islands do not
seriously negatively impact the dungeon and they could be
removed with a with a simple algorithm if needed.

V. LIMITATIONS AND FUTURE WORK

This project is meant to be used as a base from which
further development of the dungeon game can be built on.
As such, the algorithm does not generate a playable dungeon,
it only generates a visualization that shows that the algorithm
is working as intended. Additionally, the project is limited
to 2-dimensional (2D) generation. While the objects on the
map will appear 3-dimensional (3D) to the player, they are
3D objects placed on top of a 2D map, and the routes taken
to the bosses will all be 2D. Next, while the block framework
used for the Corridor allows for easy collision detection, it also
limits the number of directions that can be directly traveled
to 4, and while it is possible to travel in a diagonal direction,
it would create a jagged Corridor. Future work outside of the
scope of the project could be done to optimize and smooth
diagonal movement and turns. Lastly, the dungeon currently
has to be a pre-allocated size. The nature of the generation
algorithm allows would allow for incremental generation as
the player moves around, but this would require a fair amount
of additional work.

After the scheduled work for the project was completed and
an MVP was created, there are some additional limitations that
were presented based on the implementation of the project.
Currently, the dungeon creator has to manually tune several
parameters for their dungeon, such as how many iterations
the algorithm should run in order to ensure each boss room
is connected. Another parameter that has to be tuned is the
RRT to KPIECE probability ratio. If the map is really large, it
might be more ideal to have a larger probability of RRT being
called. Future work could automatically pick ideal parameters
for a given map size and number of dungeons.

There are also several validity check anomalies with the
current implementation. Occasionally, a Puzzle Room will
be placed somewhere where both ends connect to the same
Corridor, making it pointless. However, steps have been taken
to reduce the occurrence of this bug so that it only occurs
very rarely. While not ideal, the bug does not break anything
else so it is acceptable. Lastly, there are some limitations to
trimming. Over-trimming can result in some parts of the map
becoming isolated islands from the rest of the map. Future
work could fully delete isolated islands.

VI. CONTRIBUTIONS

Many of the tasks were done collaboratively, but the work
was roughly broken down as follows. Jaskrit developed the
initial IComponentGeometry framework and environment set
up. He also made the sub-dungeon structure around each
Boss Room and made the KPIECE, EST, and mixed planners.
Meanwhile, Luke focused on the graph representation of the
map, the RRT planner, and boss room generation. Other tasks
including the implementation of Corridors and the validity
checker were completed collaboratively during team coding
sessions using Visual Studio Code Liveshare.

VII. CONCLUSION

We have created a novel dungeon generation approach that
uses motion planning. This approach allows us to control the
connectivity of each Corridor in the dungeon through the
use of EST and KPIECE. It also allows us to control how
expansive the dungeon is through the use of RRT. Compared
to other dungeon generation methods, our approach allows
for greater flexibility in having custom dungeon components
that appear between the randomly selected points for Boss
Rooms. Finally, since our dungeon generator was implemented
in Unity, it is ready to be added to Daedulus’ Dungeon and it
is also ready to become an asset on the Unity Asset Store.

REFERENCES

[1] B. M. F. Viana and S. R. dos Santos, ”A Survey of Procedural Dungeon
Generation,” 2019 18th Brazilian Symposium on Computer Games and
Digital Entertainment (SBGames), Rio de Janeiro, Brazil, 2019, pp. 29-
38, doi: 10.1109/SBGames.2019.00015.

[2] A. Santamaria-Ibirika, X. Cantero, S. Huerta, I. Santos and P. G.
Bringas, ”Procedural Playable Cave Systems Based on Voronoi Diagram
and Delaunay Triangulation,” in 2014 International Conference on
Cyberworlds (CW), Santander, Cantabria, Spain, 2014, pp. 15-22, doi:
10.1109/CW.2014.11.



[3] E. Plaku and L. E. Kavraki, ”Distributed Sampling-Based Roadmap of
Trees for Large-Scale Motion Planning,” Proceedings of the 2005 IEEE
International Conference on Robotics and Automation, Barcelona, Spain,
2005, pp. 3868-3873, doi: 10.1109/ROBOT.2005.1570711.

[4] D. Hsu, J. . -C. Latombe and R. Motwani, ”Path planning in expan-
sive configuration spaces,” Proceedings of International Conference on
Robotics and Automation, Albuquerque, NM, USA, 1997, pp. 2719-
2726 vol.3, doi: 10.1109/ROBOT.1997.619371.

[5] I. A. Sucan and L. E. Kavraki, ”A Sampling-Based Tree Planner for
Systems With Complex Dynamics,” in IEEE Transactions on Robotics,
vol. 28, no. 1, pp. 116-131, Feb. 2012, doi: 10.1109/TRO.2011.2160466.

[6] L. S, “Rapidly-exploring random trees : a new tool for
path planning,” Research Report 9811, 1998, Available:
https://cir.nii.ac.jp/crid/1573950399665672960


