
HACMan-AFF: Learning Object Affordances for
Rolling, Spinning, and Sliding Manipulation

Jaskrit Singh
School of Robotics Engineering
Worcester Polytechnic Institute

Worcester, Massachusetts
jsingh3@wpi.edu

I. INTRODUCTION

Non-prehensile manipulation is an important open research
question in robotics. While humans can precisely control
objects through rolling, spinning, and sliding, robots struggle
to perform these actions. There have been attempts to recreate
these abilities in robots, but they all fall short.

One approach is to use a reinforcement learning (RL)
algorithm to learn a policy that takes in a start and a goal
position and outputs an action. This strategy has been used
successfully [1], but the strategy has the limitation that it
creates a reactive policy rather than making a deliberate plan.
This can be an issue because if the policy fails, there is no way
to switch to a different strategy without retraining the model.

A different approach would be to model the dynamics of
the object and then use a motion planner to create a plan to
reach the goal. Unlike the RL approach, this approach could
be used for long-horizon planning and for avoiding obstacles.
Unfortunately, the dynamics of non-prehensile manipulation
are complicated, so it is not feasible to create a precise
dynamical model.

One way to simplify the dynamics of non-prehensile ma-
nipulation is to break down manipulation into categories such
as rolling, spinning, and sliding. If we could make an object
exhibit just one of these motions, it would be easier to predict
how the object will behave.

This paper will isolate three non-prehensile manipulation
behaviors: pushing straight, rolling, and spinning. We will use
RL to train a model that attempts to do one of these actions
while avoiding the others.

We define pushing straight as translating an object in the
plane of the table, while not affecting its orientation. When
pushing straight, the object should slide, but it should not roll
or spin.

We define the roll action as rotating an object in an axis
perpendicular to the z-axis. Rolling does not involve sliding
or spinning about the z-axis.

Finally, we define the spin action as rotating an object in the
Z-axis. It is difficult to only spin an object when performing
non-prehensile manipulation with a single gripper, so some
sliding will be allowed for the spin action. However, the object
should not roll during the spin action.

Training models that perform each of these actions will
allow us to create the beginning of a model for how objects

Fig. 1: HACMan Architecture

react to non-prehensile manipulation. This includes an under-
standing of which actions can be used in each of the different
resting states of an object, as well as how stable each action is.
These models could later be incorporated into motion planning
algorithms, thereby combining the strengths of reinforcement
learning and planning.

II. RELATED WORK

This paper is based on Hybrid Actor-Critic Maps for Ma-
nipulation (HACMan) [1]. HACMan uses RL and Q-learning
to develop a model that can use non-prehensile manipulation
to move an object to a given goal. HACMan selects the best
contact point on the object and selects the best motion to make
from that contact point.

The HACMan architecture can be seen in Figure 1. First,
three depth cameras generate a point cloud of the object.
HACMan then appends a goal flow vector to each point,
showing where that point must go to get to the goal. The
augmented point cloud is then fed to the actor and critic map
neural networks. The actor map decides what motion to take
for each contact point in the point cloud. Meanwhile, the critic
map gives an initial estimate of how valuable it thinks it is
to choose a certain contact point. Finally, both the actor and
critic map outputs are fed to a multi-layer perceptron, which
gives a final estimate for the value of choosing each contact
point. HACMan uses an exploration policy and Q-learning to
develop these networks. Once the networks are sufficiently
trained, HACMan can be evaluated by setting it to always
take the maximum value action.

HACMan is able to consistently complete non-prehensile
manipulation tasks up to a precision of 3 cm in a simple
environment. It achieved an 85% success rate in simulation

and a 50% success rate in the real world (with no real-world
training).

Although HACMan was able to achieve high-level per-
formance, it has a few key limitations. First, HACMan is
incredibly data and RAM-hungry to train. After training for
17,000 iterations over 8 hours with 100 GB of RAM, we
only see a 10% success rate, and documentation suggests that
the full model requires 200,000 iterations to train to the 85%
training success rate achieved in the paper.

Furthermore, while HACMan was able to generalize to the
real world from simulated training, there is still a noticeable
gap that will likely require real-world training to address.
The fact that HACMan requires so many examples suggests
that fine-tuning the model in the real world could be time-
consuming.

Another limitation of HACMan is its limited ability to
choose a different plan if the initial plan does not work.
Although HACMan evaluates multiple contact locations and
estimates of the value of each of these locations, it does not
have a way to select between them. This leads to failure cases
where it can try and fail to do the same action over and over
again, rather than trying a different strategy.

HACMan is also limited by its inability to navigate around
obstacles. HACMan was trained and evaluated in a clear
environment, so when an obstacle is added to the environment,
its performance drops. It would likely require combining
HACMan with a motion planner to overcome this issue.

Overall, HACMan shows strong non-prehensile manipula-
tion ability, but it would benefit from being combined with a
more deliberate, planning-based approach.

III. METHODOLOGY

This paper focuses on simplifying HACMan to create sim-
pler models that would be easier to combine with planning-
based approaches. The main simplification was to remove
the goal-flow vectors from the neural network. This allows
us to give the model a general reward function to minimize
instead of requiring a goal location to be specified. Three loss
functions were generated to incentivize our desired actions:
push straight, flip, and spin.

A. Push Straight

To train the model to push straight, we incentivize trans-
lational motion up to a distance of 5 cm, and we penalize
rotation. We saturate the position loss at 5 cm so that the model
focuses on making small, stable pushes rather than trying to
make longer, potentially unstable ones. Given a translation of
p (in meters) and and an angle of rotation θ (in degrees), we
can define our loss function as follows:

Lpos = 20×max (0.05− ∥p∥, 0)

Lrot =
θ

180°

LpushStraight = Lpos + Lrot

We consider a push straight to be a success if the push was
at least 5 cm long and the object orientation changed by less
than 5°.

B. Roll

The roll action was primarily designed for changing which
face an object is resting on, for example changing the face
of a die. However, it is difficult to decouple this action from
the action of say rolling a ball. For this reason both of these
actions were combined into a single action. As before, we
design a loss function to incentivize these behaviors.

The first part of the loss function, LrotAxis, is designed to
make sure rotation occurs along the correct axis. We define
it with the formula LrotAxis = |ω · ẑ|, where ω is the unit
vector axis of rotation and ẑ is a unit vector normal to the
table surface.

The second part of the loss function is LrotAngle. We want
to encourage large rotations of up to 90°, but since a cube
rotated 60° would rotate the last 30° on its own, we will set a
smaller goal of only 60°. Thus we set LrotAngle = max(1−
θ
60° , 0).

Although rolling includes translational motion, we want to
discourage excess sliding, so we put a small loss on movement
in the XY-plane, Lpos = 1

2∥pxy∥. This corresponds to a loss
of 0.05 for a push of 10 cm.

Our roll loss is Lroll = LrotAxis+LrotAngle+Lpos. A roll
action is successful if it causes a rotation of at least 60° with
an axis within 45° of being flat.

C. Spin

The spin action involves rotating an object in the Z-axis.
This is difficult to perform for most objects without introduc-
ing some translational motion as well, so we allow for some
leeway in the translational portion of the loss.

We can use the same basic framework that we used for
the roll loss Lspin = LrotAxis + LrotAngle + Lpos. How-
ever, we need to make some changes to each of the terms.
To incentivize a rotation axis close to the Z-axis, we set
LrotAxis = 1 − |ω · ẑ|. Next, since rotation in the Z-axis is
difficult with one gripper, we only aim for a 30° turn. This
means LrotAngle = max(1 − θ

30° , 0). Lastly, we want to be
stricter with translational motion for spinning than we were
for rolling because we want the robot to turn objects with as
tight of a turning radius as possible. We set Lpos = 5

2∥pxy∥,
which corresponds to a loss of 0.25 for a 10 cm push. Finally,
we define success as rotating at least 30° at an angle within
45° of vertical.

IV. RESULTS

A. Platform

The three models were trained on the WPI Turing Cluster
with 100 GB of RAM, a GPU, and a 10 hour time limit.
Unfortunately, roll training crashed after only 2 hours and
spin training crashed after 5 hours. These crashes were likely
due to running out of RAM during an evaluation step or
due to a memory leak. Fortunately, despite the crashes, the

Fig. 2: Critic Map for the push straight action along with the
action for the highest value point

Fig. 3: Mean Action Success Rate for 200 trials

models produced meaningful results, so the models were not
re-trained. Code implementation can be found at www.github.
com/JazKarit/hacman.

B. Evaluation with Random Objects

Each model was tested for 200 stable starting positions for
the diverse set of household objects from [1]. The critic map
for the trained push straight action is shown in Figure 2 as an
example of the output of the models. We can see that, for this
object, the model learned to push from the top and along the
length of the object.

The success rates of the trained models are shown in Figure
3. The results show that the model learned to perform the roll
action very well with a success rate of 75%. The 43% success
rate for the push straight model is also good considering the
small tolerance of only 5°. The spin model performed the
worst. It was a relatively simple task with high tolerances,
and it only achieved a success rate of 47%. This suggests that
spinning is a difficult task for a single manipulator.

C. Evaluation with Chosen Objects

We evaluate the models on a chosen set of objects to see
how individual differences in the object geometries affect
performance. These objects are shown in Figure 4. Looking
at results in Figure 5, we can see that the success rate can
heavily depend on the object. This is especially true for the

(a) Lunch (b) Mug (c) Pill Bottle

(d) Planter 1 (e) Planter 2 (f) Cube (g) Tape

Fig. 4: Seven Objects Chosen for Further Testing

Fig. 5: Success rates for performing each action for each
selected object

push straight action, which ranges from a 14% success rate
with the pill bottle to a 96% success rate with the cube.

All of the actions seem to perform best for the cube, but for
the other objects, some actions are harder than others. Many
of the objects are roughly cylindrical, and it seems like the
closer an object is to a narrow cylinder, the harder it is to
push straight. Looking at the cylindrical objects in the order
of success rate, we can see that the mug has a handle, the tape
is a wide cylinder, the planters are narrower frustums, and the
pill bottle is the narrowest and is roughly cylindrical.

Meanwhile rolling performs well with the cylindrical ob-
jects but is more challenging for the lunch box. This is likely
due to a failure to flip the lunch bag when it is laying flat on
the table.

Spinning performs well on the two cylinder-like objects:
the pill bottle and the tape roll. Meanwhile, spinning performs
poorly on the frustum-like objects: the planters and the mug.
One explanation is that when a cylinder is on its side it is fairly
easy to rotate by pushing orthogonal to its rolling direction.
Meanwhile, the same kind of push is likely to lead to rolling
for a frustum.

V. DISCUSSION

The results show that the point-cloud based HACMan
framework can be used with general reward functions instead
of a specific goal position in order to train specific behaviors.
The varying performance of the trained actions on different

www.github.com/JazKarit/hacman
www.github.com/JazKarit/hacman

objects suggests that certain objects and likely certain object
orientations afford different actions.

One extension to this work would be to train a neural
network to predict the success rate of a given action with a
given object point cloud. This would present the knowledge
gained by the models trained in this paper in a convenient way
that could be used by a high-level planner. The planner could
query different paths through the different orientations of an
object to reach a goal position. The planner would avoid taking
difficult actions, like trying to flip up a face-down lunch box,
and it would focus on easy actions, like rolling a pill bottle.

With some modifications, the action models could also be
used to directly run a planner. The spin action could have an
additional input for the size of the spin. The roll action could
have an input for which face of the object should point up,
and the push straight action could take in a vector telling the
robot where to push the object. The planner could call the
actions it desires as necessary. This would be different from
using a planner with the original version of HACMan because
HACMan just takes in a goal position, and there is no control
over what actions are taken to get there.

VI. LIMITATIONS

Although this work shows some promising results, it has
several limitations.

One major limitation of this work is that the trained models
cannot be given a goal position or direction; they just try to
change the object’s position or orientation to maximize their
respective reward functions. Future work could remove this
limitation by adding additional inputs to the models.

There are also several limitations due to the model being
trained and tested only in simulation. One limitation is the
sim2real gap. The real world has higher uncertainty in friction
and object dynamics, which would lead to lower performance
for all the models, and especially the push straight model.

During training, there were several cases where the models
started to exploit broken simulation physics. Steps were taken
to avoid these exploits where they were spotted, but it is pos-
sible that the models learned some exploits, further increasing
the expected sim2real gap.

Another limitation that comes from the simulation training
is that in simulation, the robot could always distinguish the
object’s pose, while in the real world, multiple poses could
lead to the same point cloud. For example, no matter how
you orient a sphere its point-cloud looks the same. This could
make it more difficult for the roll and spin actions to deal with
highly symmetrical objects in the real world.

VII. CONCLUSION

This paper presents three RL models that use point cloud
data to perform the push straight, roll, and spin non-prehensile
manipulation actions. These models were able to learn mean-
ingful object properties and their performance on different
objects seems to be a strong indicator of the affordances of an
object in a given state. Future work could modify the models
or use the models’ understanding of object affordances as part

of a high-level planner to perform non-prehensile manipulation
with a greater ability to plan ahead.

REFERENCES

[1] W. Zhou, B. Jiang, F. Yang, C. Paxton, and D. Held, “HACMan: Learn-
ing Hybrid Actor-Critic Maps for 6D Non-Prehensile Manipulation,”
arXiv.org, Nov. 05, 2023. https://arxiv.org/abs/2305.03942

	Introduction
	Related Work
	Methodology
	Push Straight
	Roll
	Spin

	Results
	Platform
	Evaluation with Random Objects
	Evaluation with Chosen Objects

	Discussion
	Limitations
	Conclusion
	References

